摘要:区块链是一种分布式账本技术,依靠智能合约等逻辑控制功能演变为完整的存储系统。其分类方式、服务模式和应用需求的变化导致核心技术形态的多样性发展。由于2020突如其来的疫情,被大众密切关注的区块链技术,开始了积极行动,尤其是湖北省红十字会爆发信任危机后,捐助信息存证上链、区块链疫情监测平台等相继推出,让我们看到了区块链技术广阔的应用前景。
Summary: The block chain is a distributed booking technology that relies on logical control functions such as smart contracts to evolve into complete storage systems. Changes in its classification, service modes and application needs have led to the development of diversity in the form of core technologies.
关键字:区块链技术 加密技术 分布式记账 防疫抗疫
keyword: block chain technology encryption technology distributed billing, quarantine protection.
1、 区块链是什么
What's the chain of blocks
区块链是一种把区块以链的方式组合在一起的数据结构,它适合存储简单的、有先后关系的、能在系统内验证的数据,用密码学保证了数据的不可篡改和不可伪造。它能够使参与者对全网交易记录的事件顺序和当前状态建立共识。
区块链技术重新定义了网络中信用的生成方式:在系统中,参与者无需了解其他人的背景资料,也不需要借助第三方机构的担保或保证,区块链技术保障了系统对价值转移的活动进行记录、传输、存储,其最后的结果一定是可信的。
区块链技术原理的来源可归纳为一个数学问题:拜占庭将军问题。拜占庭将军问题延伸到互联网生活中来,其内涵可概括为:在互联网大背景下,当需要与不熟悉的对手方进行价值交换活动时,人们如何才能防止不会被其中的恶意破坏者欺骗、迷惑从而做出错误的决策。进一步将拜占庭将军问题延伸到技术领域中来,其内涵可概括为:在缺少可信任的中央节点和可信任的通道的情况下,分布在网络中的各个节点应如何达成共识。区块链技术解决了闻名已久的拜占庭将军问题——它提供了一种无需信任单个节点、还能创建共识网络的方法。
The source of the technical principles of the block chain can be summarized as a mathematical question: the Byzantine question. The question of Byzantine extends to Internet life and can be summarized as: how, in the broader context of the Internet, when value swaps with unfamiliar opponents are needed, one can prevent people from being deceived and confused by the malicious spoilers and making the wrong decision. Further extending the issue of Byzantine to the technical field can be summarized as: how to reach consensus at the various nodes of the network in the absence of trusted central nodes and trusted passages. The sector chain technology solves the long-known problem of Byzantine, which provides a way to create consensus networks without trusting individual nodes.
区块链技术涉及的关键点包括:去中心化(Decentralized)、去信任(Trustless)、集体维护(Collectively maintain)、可靠数据库(ReliableDatabase)、时间戳(Time stamp)、非对称加密(AsymmetricCryptography)等。
2、 区块链核心技术
核心技术1:区块+链
core technology 1: blocks + chains
关于如何建立一个严谨数据库的问题,区块链的办法是:将数据库的结构进行创新,把数据分成不同的区块,每个区块通过特定的信息链接到上一区块的后面,前后顺连来呈现一套完整的数据,这也是“区块链”这三个字的来源。
, on how to build a rigorous database, the block chain would be based on an innovation in the structure of the database, the division of data into different blocks, each with a specific information link to the back of the previous block and a complete set of data, which is the source of the three words
区块(block):在区块链技术中,数据以电子记录的形式被永久储存下来,存放这些电子记录的文件我们就称之为“区块(block)”。区块是按时间顺序一个一个先后生成的,每一个区块记录下它在被创建期间发生的所有价值交换活动,所有区块汇总起来形成一个记录合集。
区块结构(BlockStructure):区块中会记录下区块生成时间段内的交易数据,区块主体实际上就是交易信息的合集。每一种区块链的结构设计可能不完全相同,但大结构上分为块头(header)和块身(body)两部分。块头用于链接到前面的块并且为区块链数据库提供完整性的保证,块身则包含了经过验证的、块创建过程中发生的价值交换的所有记录。
区块结构有两个非常重要的特点:第一,每一个区块上记录的交易是上一个区块形成之后、该区块被创建前发生的所有价值交换活动,这个特点保证了数据库的完整性。第二,在绝大多数情况下,一旦新区块完成后被加入到区块链的最后,则此区块的数据记录就再也不能改变或删除。这个特点保证了数据库的严谨性,即无法被篡改。
顾名思义,区块链就是区块以链的方式组合在一起,以这种方式形成的数据库我们称之为区块链数据库。区块链是系统内所有节点共享的交易数据库,这些节点基于价值交换协议参与到区块链的网络中来。
区块链是如何做到的呢?由于每一个区块的块头都包含了前一个区块的交易信息压缩值,这就使得从创世块(第一个区块)到当前区块连接在一起形成了一条长链。由于如果不知道前一区块的“交易缩影”值,就没有办法生成当前区块,因此每个区块必定按时间顺序跟随在前一个区块之后。这种所有区块包含前一个区块引用的结构让现存的区块集合形成了一条数据长链。“区块+链”的数据存储结构如下图所示。
我们引用《区块链:互联网金融的终局》(肖风)的一段话来总结区块链的基本结构:“人们把一段时间内生成的信息(包括数据或代码)打包成一个区块,盖上时间 戳,与上一个区块衔接在一起,每下一个区块的页首都包含了上一个区块的索引数据,然后再在本页中写入新的信息,从而形成新的区块,首尾相连,最终形成了区块链。”这个结构的神奇之处:区块(完整历史)+ 链(完全验证)=时间戳 to summarize the basic structure of the block chain by quoting a phrase from The Block Chain: The End of Internet Finance (Shortwind): “People wrap the information generated over a period of time (including data or codes) into a block, stamped on time, connected to the previous block, each page capital containing index data of the previous block, and then adding new information to this page to form a new block, connected at the end, eventually forming a block chain.” The magic of the structure: blocks (full history) + chain (full verification) = time stamp “区块+链”的结构为我们提供了一个数据库的完整历史。从第一个区块开始,到最新产生的区块为止,区块链上存储了系统全部的历史数据。 区块链为我们提供了数据库内每一笔数据的查找功能。区块链上的每一条交易数据,都可以通过“区块链”的结构追本溯源,一笔一笔进行验证。 区块+链=时间戳,这是区块链数据库的最大创新点。区块链数据库让全网的记录者在每一个区块中都盖上一个时间戳来记账,表示这个信息是这个时间写入的,形成了一个不可篡改、不可伪造的数据库。我们认为,时间戳是区块链中一项伟大的技术创新,它可以证明什么呢? block + chain = time stamp, which is the largest innovation point in the block chain database. The block chain database allows the full web recorder to put a time stamp on each block, indicating that this information is written at this time, creating a database that cannot be tampered with or forged. We believe that the time stamp is a great technological innovation in the block chain. What can it prove? 核心技术2:分布式结构——开源的、去中心化的协议
我们有了区块+链的数据之后,接下来就要考虑记录和存储的问题了。我们应该让谁来参与数据的记录,又应该把这些盖了时间戳的数据存储在哪里呢?在现如今中心化的体系中,数据都是集中记录并存储于中央电脑上。但是区块链结构设计精妙的地方就在这里,它并不赞同把数据记录并存储在中心化的一台或几台电脑上,而是让每一个参与数据交易的节点都记录并存储下所有的数据。
, when we have block +-chain data, we're going to think about recording and storing. Who should be involved in recording the data, and where should we store the time stamped data? In today's centralized system, the data are centrally recorded and stored on the central computer. But here, where the block chain structure is well designed, it does not favour recording the data and storing them on a centralized computer or computer, but allowing every node involved in the data transaction to record and store all the data.
1.关于如何让所有节点都能参与记录的问题,区块链的办法是:构建一整套协议机制,让全网每一个节点在参与记录的同时也来验证其他节点记录结果的正确性。只有当全网大部分节点(或甚至所有节点)都同时认为这个记录正确时,或者所有参与记录的节点都比对结果一致通过后,记录的真实性才能得到全网认可,记录数据才允许被写入区块中。
1.
2.关于如何存储下“区块链”这套严谨数据库的问题,区块链的办法是:构建一个分布式结构的网络系统,让数据库中的所有数据都实时更新并存放于所有参与记录的网络节点中。这样即使部分节点损坏或被黑客攻击,也不会影响整个数据库的数据记录与信息更新。
2.
区块链根据系统确定的开源的、去中心化的协议,构建了一个分布式的结构体系,让价值交换的信息通过分布式传播发送给全网,通过分布式记账确定信息数据内容,盖上时间戳后生成区块数据,再通过分布式传播发送给各个节点,实现分布式存储。
分布式记账——会计责任的分散化(Distributedaccountability)
从硬件的角度讲,区块链的背后是大量的信息记录储存器(如电脑等)组成的网络,这一网络如何记录发生在网络中的所有价值交换活动呢?区块链设计者没有为专业的会计记录者预留一个特定的位置,而是希望通过自愿原则来建立一套人人都可以参与记录信息的分布式记账体系,从而将会计责任分散化,由整个网络的所有参与者来共同记录。
From a hardware point of view, the block chain is backed up by a network of information record repositories (e.g. computers), how does this network record all value swaps that take place in the network? The block chain designer does not set aside a specific location for professional accounting recorders, but rather wants to create, through voluntary principles, a distributed accounting system in which everyone can participate in recording information, thereby decentralizing accounting responsibilities and bringing together all participants in the network.
区块链中每一笔新交易的传播都采用分布式的结构,根据P2P网络层协议,消息由单个节点被直接发送给全网其他所有的节点。
区块链技术让数据库中的所有数据均存储于系统所有的电脑节点中,并实时更新。完全去中心化的结构设置使数据能实时记录,并在每一个参与数据存储的网络节点中更新,这就极大的提高了数据库的安全性。
block chain technology allows all data in the database to be stored in all computer nodes of the system and updated in real time. Full decentralisation of the structure allows data to be recorded in real time and updated in every network node involved in data storage, which greatly enhances the security of the database.
通过分布式记账、分布式传播、分布式存储这三大“分布”我们可以发现,没有人、没有组织、甚至没有哪个国家能够控制这个系统,系统内的数据存储、交易验证、信息传输过程全部都是去中心化的。在没有中心的情况下,大规模的参与者达成共识,共同构建了区块链数据库。可以说,这是人类历史上第一次构建了一个真正意义上的去中心化体系。甚至可以说,区块链技术构建了一套永生不灭的系统——只要不是网络中的所有参与节点在同一时间集体崩溃,数据库系统就可以一直运转下去。
, through distributed accounting, distributional distribution, distributional storage, we can find that no one, no organization or even any country can control the system, and that data storage, transaction validation, and information transmission processes are all decentralized. In the absence of a centre, large-scale participants have agreed to work together to build a grid database. This is the first time in human history that a truly decentralized system can be constructed. It can even be said that block chain technology has built an immortal system — a database system that can continue to function as long as not all participating nodes in the network break down collectively at the same time.
我们现在已经有了一套严谨的数据库,也有了记录并存储这套数据库的可用协议,那么当我们将这套数据库运用于实际社会时,我们要解决最核心的一个问题(问题三)是:如何使这个严谨且完整存储下来的数据库变得可信赖,使得我们可以在互联网无实名背景下成功防止诈骗?
We now have a rigorous database and protocols to record and store it, so when we apply it to the real world, one of the most central questions we have to address (question three): How can this rigorous and fully stored database become credible so that we can succeed in preventing fraud in a context where the Internet has no real name?
核心技术3:密码学基础
core technology 3: cryptography base
区块链的密码学基础,最重要的有两个: 哈希函数和非对称加密算法。
, two of the most important cryptographic foundations of the block chain: the Hashi function and the asymmetric encryption algorithm.
一是哈希函数(Hash Function)可以被译为散列函数、杂凑函数。区块链领域里目前使用的主要为安全哈希算法(Secure Hash Algo-rithm,缩写SHA)。对哈希函数的最简单解释,就是把输入值映射为一个固定长度的数字摘要。它的输入值可以是任意的,一切可以被数字化的东西,电影、图片、音乐、文字、合约、代码都可以,输出值则是一个固定长度的二进制数字。这种映射关系,就像人和他的指纹,人是输入值,指纹就是输出值,是这个人的映射。哈希函数有两个主要特点:一是不能倒算。正向运算哈希函数,快速简单,但倒算却不可能实现,也就是说不可能通过输出值算出输入值,如果一定要找出输入值,只能通过穷举法,把可能的输入值依次尝试,直到找出正确的输入值,但由于输入空间无限,事实上,这在现实中是不可能的。延续之前的比喻,不能倒算可以被想象为这样的关系:取一个人的指纹很容易,但靠指纹算出这个人的信息则是不可能的。二是不可能人为制造哈希碰撞(Hash col-lision)。碰撞是指两个输入值不相同,但输出值相同的情况。因为输入值的范围无限,但输出值的范围有限,所以碰撞理论上一定 存 在的。以SHA-256算法为例,它的输出值是一个256位的二进制数字,存在2256种可能,理论上进行2130次输入就会有99%的可能性发生一次碰撞,不过既使用人类制造的所有计算机自宇宙诞生一直运算到现在,发生一次碰撞的几率也可以忽略不计。继续比喻,不可碰撞就是说:虽然只要有无限多数量的人,就有可能出现两个指纹相同的人,毕竟理论上构成指纹的原子数量是有限的,其排列组合方式因而也是有限的,但要以人工方法找到这两个人则是不可能的。基于这两个特点,哈希算法就能为任何数据提供一个唯一、对应的摘要,比喻的说也可以叫做为任何数据算出一个指纹。这就是哈希算法的主要用途。
The simplest explanation for the Hashi function is to map the input value into a fixed-length digital summary. Its input value can be arbitrary, anything that can be digitized, and its output value can be translated into a bulk function, a compact function. The output value is a fixed-length binary number in the area of the block chain, as in the case of humans and their fingerprints, as in the case of humans, as in the case of humans. The Hashi function has two main features: the Hashi function, as in the case of short-terms, but in the case of short-terms, as in the case of short-terms, as in the case of short-terms, as in the case of short-terms, as in the case of short-terms, as in the case of short-terms, as in the case of short-terms, as in the case of short-terms, as in the case of short-terms, as in the case of short-terms.
二是非对称加密加密的办法分两种,对称的和非对称的。简单的说,如果加密和解密用相同的密钥,就是对称加密,如果不同,则是非对称加密。对称加密也可能是安全的,但前提是能够安全传输密钥。比如上级和特工之间共用同一个密码本,只要密码本不泄露,那密文泄露也没事,但密码本一旦被敌人掌握,那就一切皆休。上级和特工之间可以有秘密通道传输密码本,但在现实的、开放的互联网环境中,只要传输密钥,就无法保证安全。在开放的传输环境中,实现安全的加密,就需要非对称加密算法。非对称加密中,需要公钥和私钥两种密钥,公钥与私钥一一对应,公钥公开,私钥保密。如果使用公钥对内容加密,那么就只有用这个公钥对应的私钥才能解密,只要私钥不泄露,那这个内容就是安全的;同样反过来,如果用私钥加密内容,那么人人都可以用对应的公钥加以解密获得内容,也就可以确知,这个内容必定是由这个公钥的掌握者发出,而不可能来自任何其他人。如果甲说,他向乙转了一块钱,别人如何验证这确实是甲说的,并且钱确实是转给乙的,而数额也没有被任何人改动过呢?甲就可以把这条转钱的信息取哈希值,发信息时,把这个哈希值用私钥加密后随信息一起发出去,这样,任何人都可以重新计算信息的哈希值,并和用甲的公钥解密出的哈希值对比,对原来信息的任何改动都会使哈希值发生变化,因而发生不一致。如果一致,就说明信息的内容不可能被修改过,而且这个信息也只可能是甲发出的,这个过程就实现了甲对自己发出的信息的签名验证。
is an asymmetrically encrypted method. Symmetrically, if encryption and deciphering use the same key, it is symmetrically encrypted, if different. Symmetric encryption may also be secure, provided it can be safely transmitted. For example, if the password is not leaked, the password is leaked as long as it is not leaked, the password is leaked as long as it is captured by the enemy. If you use the key to encrypt it, the password is encrypted. If you use the key to encrypt it, then only the private key to decode it in a realistic, open Internet environment, as long as it is transmitted. In an open transmission environment, secure encryption is possible.
从信任的角度来看,区块链实际上是数学方法解决信任问题的产物。过去,人们解决信任问题可能依靠熟人社会的“老乡”,政党社会的“同志”,传统互联网中的交易平台“支付宝”。而区块链技术中,所有的规则事先都以算法程序的形式表述出来,人们完全不需要知道交易的对手方是“君子”还是“小人”,更不需要求助中心化的第三方机构来进行交易背书,而只需要信任数学算法就可以建立互信。区块链技术的背后,实质上是算法在为人们创造信用,达成共识背书。[1]
From a trust perspective, the block chain is actually a product of mathematical solutions to trust problems. In the past, people may rely on the “old folks” of acquaintance societies, the “gays” of political parties, and the traditional Internet trading platform, the “paying treasures.” In block chain technology, all rules are expressed in the form of arithmetical procedures. There is no need to know whether the counterpart to the transaction is a “gentleman” or a “small person”, much less to turn to a centralized third-party institution for a transaction endorsement, but only to trust in mathematical algorithms to build mutual trust. Behind the block chain technology, the algorithm is essentially a credit creation, a consensus endorsement. 核心技术4:脚本 Core technology 4: Script: 脚本可以理解为一种可编程的智能合约。如果区块链技术只是为了适应某种特定的交易,那脚本的嵌入就没有必要了,系统可以直接定义完成价值交换活动需要满足的条件。然而,在一个去中心化的环境下,所有的协议都需要提前取得共识,那脚本的引入就显得不可或缺了。有了脚本之后,区块链技术就会使系统有机会去处理一些无法预见到的交易模式,保证了这一技术在未来的应用中不会过时,增加了技术的实用性。 The script of 一个脚本本质上是众多指令的列表,这些指令记录在每一次的价值交换活动中,价值交换活动的接收者(价值的持有人)如何获得这些价值,以及花费掉自己曾收到的留存价值需要满足哪些附加条件。通常,发送价值到目标地址的脚本,要求价值的持有人提供以下两个条件,才能使用自己之前收到的价值:一个公钥,以及一个签名(证明价值的持有者拥有与上述公钥相对应的私钥)。脚本的神奇之处在于,它具有可编程性:(1)它可以灵活改变花费掉留存价值的条件,例如脚本系统可能会同时要求两个私钥、或几个私钥、或无需任何私钥等;(2)它可以灵活的在发送价值时附加一些价值再转移的条件,例如脚本系统可以约定这一笔发送出去的价 值以后只能用于支付中信证券的手续费、或支付给政府等。 is essentially a list of instructions that are recorded in each value exchange activity as how the recipient of a value exchange activity (the holder of value) acquires these values and what additional conditions need to be met to spend the retained value that it has received. Normally, a script that sends its value to the target address requires the holder of value to provide the following two conditions in order to be able to use the value it received before it: a public key and a signature (the holder of proof of value has a private key corresponding to the above-mentioned public key). The wonder of the script is that it is programmed: (i) it can change the conditions that cost retained value flexibly, for example, the script system may require two private keys, or several private keys, or no private keys; and (ii) it can provide flexible conditions for retransfer of value at the time the value is sent, for example, the value that the script system can agree on the price to be paid only to cover the transactional securities in trust, or to the Government . 3、 区块链的架构 从下图可以看到区块链基础架构分为6层,包括数据层、网络层、共识层、激励层、合约层、应用层。每层分别完成一项核心功能,各层之间互相配合,实现一个去中心化的信任机制。 shows the following diagrams of the structure of the block chain in six layers, including data layers, network layers, consensus layers, incentive layers, contract layers, application layers. Each layer completes a core function, the layers interact and achieves a decentralised trust mechanism. 一、数据层-描述区块链技术的物理形式 i. Data layer - description of the physical form of block chain technology 数据是系统存在的根本,数据的重要性不言而喻,图中很为数据访问控制服务、跨链、链上链下服务。区块链由于其链的特性,对数据的管理比一般系统较复杂。首先数据访问控制服务,区块链是分布式系统,数据的访问控制要求在整个网络中分布式数据存储数据的一致性,访问过程较复杂,多副本的模式,在网络中每个节点上对数据的存储和查询都要求在建立在共识算法一致性后确认写入,同时区块链系统数据一致增长,对数据的访问效率需要考虑。跨链,之前有文章专门写过跨链技术,在区块链系统中,大多数链其实都是不知道链外的世界,不具备天然的跨链能力,跨链是一个复杂的过程,既需要对链中节点要有单独的验证能力,需要去中心化的输入,更需要对链外世界的信息的获取和验证。通过公证人机制(Notary schemes)、侧链/中继(Sidechains/relays)、哈希锁定(Hash-locking)等跨链技术实现链与链之间的通讯,跨链在数据层的作用可归结为区块链系统系统数据的交互。链上链下服务,安全访问链下数据,实现链上和链下数据的交叉。区块链由于链的特性考虑整个应用环境,不单单只是当时区块链系统数据的存储和交互,也需要各种区块链间和区块链链下数据之间的交互。 如图一所示,区块链系统设计的技术人员首先建立的一个起始节点是“创世区块”,之后在同样规则下创建的规格相同的区块通过一个链式的结构依次相连组成一条主链条。随着运行时间越来越长,新的区块通过验证后不断被添加到主链上,主链也会不断地延长。 , as shown in figure I, a starting point for the technical staff who design block chain systems is the “inventive block”, followed by blocks created under the same rules with the same specifications, which are connected by a chain structure. As the operating time increases, new blocks are added to the main chain through validation, and the main chain is extended. 二、网络层-实现区块链网络中节点之间的信息交流。 II. Network layer - information exchange between nodes in the network of blocks. 区块链网络本质上是一个P2P(点对点)网络。每一个节点既接收信息,也产生信息。节点之间通过维护一个共同的区块 链来保持通信。区块链的网络中,每一个节点都可以创造新的区块,在新区块被创造后会以广播的形式通知其他节点,其他节点会对这个区块进行验证,当全区块链网络中超过51%的用户验证通过后,这个新区块就可以被添加到主链上了。 三、共识层-让高度分散的节点在去中心化的系统中高效地针对区块数据的有效性达成共识。 区块链中比较常用的共识机制主要有 The more commonly used consensus mechanism in the block chain at . 工作量证明(Proof of Work) 权益证明(Proof of Stake) 股份授权证明(Delegated Proof of Stake) 还有投注共识、瑞波共识机制、Pool验证池、实用拜占庭容错、授权拜占庭容错、帕克索斯算法等。 and bets on consensus, the Ripper Consensus mechanism, the Pool identification pool, functional Byzantine tolerance, authorization of Byzantine misbehaviour, the Parksaus algorithm, etc. . 四、激励层-提供一定的激励措施,鼓励节点参与区块链的安全验证工作。 iv, incentive level - provide incentives for nodes to participate in the security validation of block chains. 五、合约层-主要是指各种脚本代码、算法机制以及智能合约等。 , V. Contract layer - mainly various script codes, algorithms, smart contracts, etc. 以比特币为例,比特币是一种可编程的货币,合约层封装的脚本中规定了比特币的交易方式和过程中涉及的种种细节。 takes the example of Bitcoin, a programmable currency with details of how and how Bitcoin is traded in the contract envelope script. 六、应用层-封装了区块链的各种应用场景和案例 比如基于区块链的跨境支付平台OKLink[2] such as the block-based cross-border payment platform OKLink 4、 区块链的特点 基于上面的描述,那么关于区块链常见的提法:匿名、点对点传输、公开透明、去中心化、信任机制等等各种说法就不难理解了。参与区块链,只需要一个公私钥对,谁掌握公钥对应的私钥,谁就是这个公钥地址(钱包)的所有者,任何人都可以拥有任意数量的钱包,记住私钥就行,和参与者是何许人,在哪里毫无关联。交易是点对点的,或者说是一个地址对另一个地址的,交易信息全网公开,全网可查询,全网一起维护,因而也就不存在一个中心管理者。 is based on the description above, so it's easy to understand the usual references to block chains: anonymity, point-to-point transmission, transparency, decentralisation, trust mechanisms, etc. Participation in block chains requires only one public-private pair, who has the private key to the public key, who owns the public key, who owns the public key address (the wallet) in any number of wallets, just remember the private key, and who is the participant and where it is. The transaction is point-to-point, or one address to another, the transaction information is open, the whole network is accessible, the whole network is maintained together, so there is no central manager. 在没有中心管理者的条件下,区块链又通过一系列的机制设计确保链上信息可靠、可信任,这一系列的机制设计就构成了区块链的共识机制。 , without a central manager, the block chain is designed through a series of mechanisms to ensure the reliability and trustability of the information on the chain. 实际上,目前区块链相对于比特币区块链已经有了很多发展。比如智能合约,哈希函数能把任何数字内容转化为一个数字摘要,一段代码、一个程序当然也可以。把合约程序化,然后把程序的输出上链就成为了智能合约。 事实上,作为一种数据结构的区块链,不止可以被设计用来作为一种电子货币系统,也不止是一种智能合约的实现方式,它能为分散的、无需任何组织认证背书、相互完全陌生的使用者,提供一种对任何数字信息,建立可靠的、不可更改的记录和鉴证方式的系统。区块链的演化方向及潜在的应用场景可能还有很多当前已经有了不少有益探索,但更多可能还需要在未来慢慢探索。 is in fact a block chain as a data structure that can be designed not only as an electronic monetary system, but also as a way of realizing an intelligent contract that can provide a system of reliable, unalterable recording and forensics for any digital information for a dispersed user that does not require any organization to authenticate endorsements, completely unfamiliar with each other. There may be a lot of useful exploration at present, but more may need to be explored slowly in the future. 比如POS Proof of stake,权益证明)。比特币的POW是一种经典的共识机制,但用工作量对记账权进行投票所需的算力竞争,意味着巨大的能源消耗,POS则是用币龄替换了POW中的算力,币龄是指持有的电子货币数量与持有时间的乘积,单个节点的币龄越大,它获得记账权和出块激励的可能性就越大。 , for example, POS Proof of stake proof. Bitcoin's Pow is a classic consensus mechanism, but the amount of computing competition required to vote on the billing rights with workload means huge energy consumption, and POS replaces the weight of Pow with the age of currency, which means the amount of electronic currency held and the amount of time held, and the older the currency of a single node, the greater the likelihood that it will get the crediting power and the incentive to come out. 比如公链、私链、联盟链。比特币是典型的公链,数据全网公开,所有节点随意加入和退出,因此也称为非许可键;私链则一般非公开,需要授权才能加入节点,链上只有少量节点,只需要单个或部分节点来验证交易;联盟链则是由若干机构或组织共同发起和维护的链,比如Libra的初始设计就是联盟链。后两者因为节点准入设计,所以也被称为许可链。 such as public chains, private chains, and chains of alliance. Bitcoin is a typical public chain, data is open all over the net, and all nodes join and exit, so it is also referred to as non-licensed keys; private chains are generally closed and require authorization to join nodes, with only a small number of nodes in the chain, and only individual or partial nodes are required to verify the transaction; the chain of alliance is a chain initiated and maintained by several institutions or organizations, such as Libra's original design. The latter two are also referred to as licence chains because of nodes' access design. 为获得对事实的完整认知,人们要求信息:完整、真实可信。而海量信息的原始面貌恰恰不能满足这个要求,多呈现出的状态是:碎片化、可信度参差不齐。这为人们获取完整的事实带来了巨大挑战。应对疫情,我们不仅需要多部门的数据和信息,还需要了解全过程的信息;不仅需要全过程信息,也需要实时信息。同时需要这些信息可以开放给社会查询,保证信息的完整、实时、开放和透明。 is a request for information: complete and authentic. The original face of big information does not meet this requirement, and many of it is: fragmentation, mixed credibility. This poses a huge challenge to people's access to complete facts. In order to deal with the epidemic, we need not only multisectoral data and information, but also information about the whole process; it requires not only full-process information, but also real-time information. This information is also needed to be accessible to society, guaranteeing its integrity, real-time, open and transparent. 区块链技术概括起来是指通过去中心化和去信任的方式集体维护一个可靠数据库的技术。由于2020突如其来的疫情,被大众密切关注的区块链技术,开始了积极行动,尤其是湖北省红十字会爆发信任危机后,捐助信息存证上链、区块链疫情监测平台等相继推出,让我们看到了区块链技术广阔的应用前景。区块链可以生成一套记录时间先后的、不可篡改的、可信任的数据库,这套数据库是去中心化存储且数据安全能够得到有效保证的。 1、疫情中显现的突出问题 针对疫情期间所出现的问题,我们总结了以下三点: , in response to the problems that arose during the epidemic, we summarized the following three points: 红十字会的信任问题:在这次疫情中,爆发的信任问题非常突出。承担着接受和分发援赠物资工作的湖北省红十字会因物资分发效率低下、信息不透明等问题,被推上了社会舆论的风口浪尖。 疫情谣言问题:疫情发生以来,人们时刻关注疫情信息,新闻媒体是社会公众获取信息的主要来源。疫情发生后,各类媒体积极报道疫情最新进展,宣传防疫知识,传播正能量。然而,疫情谣言、虚假知识也混淆视听。 医疗信息共享问题:在疫情防控过程中,医疗数据共享的缺位和不及时的情况突出,给疫情防控带来不小的挑战。纵向需要协同公共卫生体系,促进公共卫生机构和社管、公安、交通进行数据共享,以实现特定疫情下更大范围的快速协作和应急处置,控制疫情蔓延;横向协同医院、基层医疗机构以及专科机构等,实现预防监测和干预控制,形成防治一体化。 Medical information sharing: In the prevention and control of an epidemic, gaps and delays in the sharing of medical data are highlighted, posing considerable challenges to the prevention and control of an epidemic. Vertical coordination with the public health system is required to promote the sharing of data between public health institutions and social services, public security and transport in order to achieve rapid collaboration and emergency response in the larger context of a given epidemic and to control the spread of an epidemic; horizontal coordination with hospitals, grass-roots medical institutions and specialized institutions, etc., to achieve preventive monitoring and intervention control and to integrate prevention and control. 疫情期间,网络上出现了对武汉红十字会的质问。人们质问红会,捐了那么多东西,怎么还缺?是捐的不够,还是派发不力?虽然有报道显示九州通协助武汉红会医疗物资管理,派发效率得到改善,但捐赠总量有多少,符合保准的又有多少?派发改善后,对一线医院的供给情况如何?这些数据仍是一个问号。 During the outbreak, there were questions about the Wuhan Red Cross on the Internet. People questioned the Red Cross about the donation of so much, why is there a shortage? Are there not enough donations or weak distributions? While there are reports that Kyushu is assisting the Wuhan Red Cross in the management of medical supplies and improved distribution efficiency, how many donations have been made and how many have been approved? 为形成对局面的完整认知,人们将零碎舆论、传言、和各种官方渠道,主流媒体平台消息拼接在一起。拼接不上,对接不整齐之处,难免靠想象和猜测填补缝隙。当想象和猜测也无法填补逻辑链条断裂的时候,便成为我们在此次疫情中看到的诸多传言。 , in order to create a complete understanding of the situation, people combine the news of fragmented public opinion, rumours, and various official channels with mainstream media platforms. Where there is incoherence and incoherence, it is inevitable to fill the gap by imagination and conjecture. When imagination and conjecture do not fill the fracture of the logical chain, it becomes a lot of rumours that we see in the epidemic. 对于可信度不足,或不辩真伪的信息,即便再完整,也可能是无效信息,还可能会造成混淆视听的负面影响。此次人们对红会的质疑便是如此。虽然利用红会接收物资在理论上比民间零散接收更有效率,但当红会面临信任危机,这些理论上的优势会很大程度上受到削弱,那么红会提供的对完整图景的解释,虽然在逻辑链条上是完整的,可信度却受到很大质疑。 may be ineffective or confusing information, even if it is incomplete, and may also have a negative effect on confusion. This time people question the Red Cross. While it is more efficient to use the Red Cross to receive goods in theory than to receive them in a piecemeal fashion. But when the Red Cross faces a crisis of trust, these theoretical advantages are greatly weakened, the explanation provided by the Red Cross for the complete picture, though complete on the logical chain, is highly questionable. 除了完整、真实可信,人们对信息的要求还包括实时性。危机情形瞬息万变,静态、滞后的信息,显然不能无法满足人们对危机发展走向的把握,既不能有效服务政府决策,也不便于公众知情和监督。应对疫情,我们不仅需要多部门的数据和信息,还需要了解全过程的信息;不仅需要全过程信息,也需要实时信息。同时需要这些信息可以开放给社会查询,保证信息的完整、实时、开放和透明。区块链按时间顺序将区块以链的形式组织起来的数据结构,使用分布式节点共识算法和密码学算法提供了抗篡改,可追溯和安全等特性,为医疗数据共享注入了活力。针对医疗数据共享中不能保证数据真实性,同时当对数据有争议时,不具备可追溯性等问题,区块链能够对医疗数据共享,并结合医疗数据易复制和易传播的特点,实现预防监测和干预控制,形成防治一体化。 , in addition to being complete, authentic and reliable, requires real-time information. Crisis situations change rapidly, static and delayed information clearly cannot satisfy people's understanding of the course of crisis, neither effectively serves government decision-making nor facilitates public access to information and oversight. Responding to the epidemic requires not only multisectoral data and information, but also information about the entire process; it requires not only full-process information, but also real-time information. This information needs to be accessible to society, ensuring that it is complete, real-time, open and transparent. 2、区块链在疫情防控中的具体应用 2 1.区块链+公益:解决信任危机 1. 区块链是通过技术和算法建立信任生态体系的一个工具,因此对于疫情期间社会舆论普遍讨论的慈善捐赠公信力问题,推动了区块链技术在公益领域走向落地。区块链技术在分布式账本、信息不可篡改的基础上,由受赠人、捐赠人、政府部门及媒体组成的联盟链,将捐赠全过程,从物流、仓储、分发、派发、公示等数据以全链条的方式进行存证,为救援物资和善款等提供溯源和公示服务,让各类信息变得公开透明,提高资源配置效率,增加社会互信。 is a tool for building trust in ecological systems through technology and algorithms, thus promoting the credibility of charitable donations discussed by public opinion during the epidemic. Block chain technologies, on the basis of distributed accounts, intelligibility of information, a chain of alliances of grantees, donors, government departments and the media, will donate the entire process, using data such as logistics, warehousing, distribution, distribution, publicity, etc., as a whole chain to provide traceability and publicity services for relief supplies and goodwill, making information of all types transparent, improving resource allocation efficiency and increasing mutual trust in society. 2月3日,中国计算机协会区块链专业委员会委员、武汉大学国家网络安全学院教授崔晓辉和他团队20多名学生48小时开发的“全国抗击新冠肺炎防护物资信息交流平台-珞樱善联V1.4版本”上线,捐赠者和受捐者信息开放透明,帮助双方快速对接,完成防护物资的运送。 2 . On 3 March, >, the members of the Specialized Committee on Block Chains of the China Computer Association, Professor Choi Xiaohui of the National Institute of Cyber Security of Wuhan University and his team, developed a 48-hour “National Information Exchange Platform to Combat New Cream Pneumonia Protection Materials - version V1.4 of the Quechua Quechua >, were launched, and donor and recipient information was opened and transparent to help both sides quickly dock and complete the delivery of protective materials. 2月7日,支付宝上线“防疫物资信息服务平台”。该平台利用蚂蚁区块链技术,对物资的需求、供给、运输等环节信息进行审核并上链存证。同时,支付宝还向疫情相关小程序开发者提供区块链算力永久免费、专项资金支持。 2 2月10日,趣链科技联合复星集团、雄安集团发布“慈善捐赠管理溯源平台”,邀请各大捐赠机构、基金会将数据上链,追溯和管理各社会机构的捐赠物资、捐赠资金用途。主要针对慈善捐赠以及抗击疫情中“需求难发声、捐赠难到位、群众难相信”三大难题,致力于打通慈善捐赠的全流程,确保捐赠方顺利完成物资捐赠,群众能看见相信捐赠。 On 10th of the day, 2 从政府主导慈善、到企业主导慈善,在到如今互联网慈善事业的快速发展,中国的慈善公益在过去四十年里不断发展迭代,国民的公益意识开始觉醒并被推动着不断前行,越来越多的人参与到力所能及的公益活动之中。公益慈善领域的覆盖领域与市场规模都在与日俱增,慈善公益组织也一直扮演着从捐赠人到受助人的信任中介角色。 更低成本、更高效率、更安全地解决信任问题,是区块链的优势。区块链可以尽可能地在物资捐赠及分发等全流程摆脱人的因素,以算法与技术重塑信任机制,增强慈善组织的社会公信力,开启全新的公益慈善篇章。区块链技术的加入,将能够使公益慈善组织不再扮演捐赠资产的流转中介角色,让捐款人与受助人直接匹配对接,让捐赠人捐的放心,受助人拿的安心。 is the advantage of the chain of blocks. Block chains can, as far as possible, move away from the human element in the entire process of donation and distribution of goods, in order to restore trust mechanisms in algorithms and technologies, enhance the social credibility of charitable organizations, and open a new chapter in charity. 区块链凭借信息公开不可篡改等特性可确保慈善组织的财务数据真实可审计,能重塑慈善信息披露机制,将相关数据上链,解决当前因信息披露不足而导致的社会信任问题;利用区块链可溯源的技术特性可改善慈善物资跟踪机制,通过在链上记录并存储相关物资的募集、分配与使用情况,实现捐赠信息的公开和物资流向的可追溯,让社会了解每一笔捐赠的最终去向,降低组织和个人作假的可能性;区块链的可控匿名机制能满足部分低调捐赠者的需求,保护捐赠者的个人隐私安全;而若能对特定项目、特定人群在区块链系统底层引入智能合约技术,事先设定物资使用规则,就能做到自动分配,保证专款专用,大大提高物资从慈善组织到受助人之间的效率。 block chains, by virtue of characteristics such as open access to information, can ensure that the financial data of charitable organizations are genuinely auditable and re-reform mechanisms for the disclosure of charitable information, bringing the relevant data up the chain and addressing the current problems of social confidence caused by insufficient disclosure; the use of the technical characteristics of the chain of blocks can improve mechanisms for the tracking of charitable goods by recording and storing the collection, distribution and use of related materials on the chain, making the disclosure and flow of donated information traceable, allowing society to know the final destination of each donation, reducing the possibility of fraud by organizations and individuals; the controlled anonymous mechanism of the chain of blocks can meet the needs of some low-profile donors and protect the personal privacy of donors; and the introduction of smart contract techniques for specific projects, specific groups of people at the bottom of the sector chain system, setting pre-defined rules for the use of goods, allowing for automatic distribution, guaranteeing exclusive funding, and significantly increasing the efficiency of goods from the charity organization to the recipient . 在可预测的将来,区块链有望重塑慈善公益模式,实现完全点对点的精准慈善,而慈善组织也将在变化中完成角色转变,从慈善中心机构和资产流转中介变成慈善运营管理组织和信息发布与审核者。 is expected in the foreseeable future to reshape the philanthropy public good model and achieve perfect point-to-point philanthropy, while philanthropist organizations will change their roles from charity centre institutions and asset-flow intermediaries to charity operations management organizations and information publishers and reviewers. 针对此次疫情,已经利用区块链技术赋能慈善事业的蚂蚁金服反应迅速。在春节前,用户就能通过支付宝公益向疫区进行捐款,并且所有的爱心捐赠项目和用户捐赠信息都已接入蚂蚁区块链,实现平台捐赠数据的公开透明。 has responded quickly to the epidemic by using block-chain technology to empower philanthropy. By spring, users will be able to contribute to the epidemic area by paying a treasure public good, and all love projects and user-donation information have been fed into the ants block chain to make the Platform's donated data transparent. 2. 区块链+疫情预警:让疫情监控预警更及时 2. 乌士儿在《硬核:用区块链技术改进国家级传染病监测预警网络》中提出了改进型建议:优化目前的逐级垂直单向国家传染病上报网络,利用区块链分片机制,建立区、市、省和国家四级区块链自动化数据同步网络,在四级网络中依托各级的疾控中心,建立突发传染病数据采集和实时预警自治能力,不完全依赖国家级传染病预警系统。 利用目前已有的公共卫生数据交换平台作为每级数据的交换节点,形成实时自动化的数据交换机制。各区之间的传染病报告数据在市级防疫链同步;各市之间的传染病报告数据在省级防疫链中同步;以此类推,到国家级同步全国的防疫数据。四级防疫链像四个车轮一样,在自动化完成各区、市、省的内部防疫预警工作的同时通过国家级防疫链不断更新和补充其他省份的数据,形成具备一定区域自治能力的防疫网络。 uses the existing public health data exchange platform as an exchange node for each level of data, creating a real-time automated data exchange mechanism. Data on infectious diseases reported between districts are synchronized in the municipal quarantine chain; data on communicable diseases reported between municipalities are synchronized in the provincial quarantine chain; this is taken into account in synchronizing national immunization data. 具体来说,对于疫情上传的多重审核问题,建议放宽传染病初次上报的权限,医生和基层医疗机构可以直接上报初次传染病报告卡;之后再由防保医生和区,市CDC人员核实和补充该报告卡;而国家传染病大数据预警可以利用初次传染病报告卡提前计算传染病暴发和扩散趋势,从而开展预警和准备工作。 specifically, with regard to the multiple screening of epidemic uploads, it is recommended that the initial notification of infectious diseases be eased so that doctors and primary health-care institutions can report directly on the initial infectious disease report card; the report card can then be verified and supplemented by preventive doctors and district, municipal CDC personnel; and that the National Big Epidemic Early Warning card can be used to pre-calculate the outbreak and spread of infectious diseases, leading to early warning and preparedness. 其次,对于国家疾控中心上层决策相应时间较长的问题,建议依托于四级防疫链数据实时同步能力,通过区块链智能合约建立基于规则模型的数据实时判断预警能力;将目前的国家传染病自动预警功能下沉到各区,市和省级的防疫链中,形成基层实时预警网络,进而建立国家和基层的双层预警网络。 Secondly, with regard to the longer time frame for decision-making at the upper levels of the National Centre for Disease Control, it is proposed to build on the real-time synchronization of level 4 anti-epidemic chain data and to establish a rule-based model-based data-based early warning capability through block chain intelligence contracts; to sink the current automatic national infectious disease early warning function into the quarantine chain in the districts, municipalities and provinces, to form a grass-roots real-time early warning network, leading to the establishment of a national and grass-roots two-tier early warning network. 而对于医院间数据孤岛问题,可构建区、市、省、国家级区块链防疫链,实现跨医院,跨区域的疫情数据自动化同步能力,在四级防疫链中通过四级卫生健康数据交换节点实现跨区域和层级的数据交换。 同时,依托区块链数据可溯源的特性形成完整的、防篡改的责任链条能够完善追责机制,给老百姓提供一个透明化监督和事件追责的数据依据,为防疫和控制疫情提供坚实的群众基础。同时,这也有利于各级政府、医院、疾控中心以及其他相关主体在疫情之后积极总结经验教训,增强防患于未然的能力。 At the same time, the chain of responsibility, based on the traceability of block-chain data, can improve accountability mechanisms, provide a transparent basis for monitoring and incident accountability, and provide a solid base for the prevention and control of the epidemic. At the same time, it will help governments at all levels, hospitals, CDCs and other relevant actors to actively learn lessons after the outbreak and increase their ability to prevent the onset of the epidemic. 3.区块链+信息存证:抑制虚假信息传播 3. 基于区块链技术的可信性构建存证平台,将新闻信息都在该平台上保存证据,实现信息的可追溯性,同时也将对垃圾信息、虚假信息的产生和传播起到限制作用。首先,基于区块链技术建设信息存证平台,用于保存新闻作品的所有权证据;其次,基于区块链技术建设数字身份标识平台,为新闻和信息的所有参与者分配唯一的身份标识,建立身份标识与信息之间的对应关系;最后,基于区块链技术建设信息验证平台,用于检验新闻信息是否上链存证。三个平台通力协作,可以大大降低造谣传播的追查成本,提高新闻消息的管控效率。 is based on the credibility of block-chain technology to build a platform for record-keeping, where news messages are stored and information retraceable, while limiting the generation and dissemination of garbage-based and false information. First, block-chain-based technology builds an information-repossession platform to preserve evidence of ownership of news products; secondly, a digital identification platform is built based on block-chain technology that distributes a unique identifier for all participants in news and information and establishes a correspondence between identification and information; finally, an information-certification platform based on block-chain technology is built to verify whether news messages are connected. The three platforms work together to significantly reduce the tracing costs of disinformation dissemination and improve the efficiency of news management. 区块链本质是一个不可篡改的分布式数字账本,其可溯源、不可篡改、多节点辅助验证等特点,可被用于打造一个可信的有约束力的舆情机制。这样一个舆情机制包含了信源评估、内容不可篡改,以及多节点内容验证等三方面相辅相成的特点。借助区块链技术,舆情监管体系可以实现对信息的溯源追踪,从而有效打击网络谣言,同时,由于区块链技术可以实现对信息产生时间、流转过程等细节的全节点记录,可以支撑多维度信息的交叉验证,从而让舆情研判更具科学性和预见性。 一个基于区块链技术的舆情系统,由于信息节点的多元化,信息生产成本高,传播过程不可逆等特点,将帮助信息消费者提升信息选择的水平。同时,舆情传播路径可追溯,也将对垃圾信息、虚假信息的产生和传播起到限制作用。 , a system based on block-chain technology, which, owing to the diversity of information nodes, the high cost of information production and the irreversible nature of the dissemination process, will help information consumers to upgrade their information selection. At the same time, the retroactive transmission path will also limit the generation and dissemination of junk information, false information. 4.区块链+医疗:助力医疗信息共享 4. 区块链+医疗是一个非常适合技术落地的应用场景。基于区块链技术打造的医疗信息平台,实现医疗信息共享,将各医院、政府部门、银行、医保单位组建联盟链,既有效保障了电子病例上链的真实性、传递共享中的可信性,又能便于用户手机查询全套病例及医院共享情况,实现医院电子病例生成上链、患者隐私数据保护、跨医院就诊、病例信息同步、医保报销的跟踪等,从而提升医院信息化、数字化、云端化整体的能力和应用,实现联动共同防治。 + medical is a well-suited application scenario. Medical information-sharing based on block-link technology enables the sharing of information between hospitals, government departments, banks, and health-care providers. This effectively guarantees the authenticity of the electronic case chain, conveys the credibility in sharing, and facilitates access to the full set of cases and hospital sharing by mobile phone, enabling hospital electronic case generation links, patient privacy data protection, cross-hospital consultations, the synchronization of case information, the tracking of medical claims, etc., thereby enhancing the capacity and application of hospitals to inform, digitize and cloudize the whole chain and achieve joint prevention and treatment. 基于区块链不可篡改的特性,建立以区块链为基础的医疗用品溯源系统,每一个按时间标记的交易都将被自动复制到区块链上且不能修改。区块链不可篡改的特点,既保证了数据的真实性,又确保了数据传输的安全性, 同时也可达到降低成本的效果。利用区块链分布式存储的特征,医疗用品制造商、批发商、终端销售通过使用医疗用品溯源系统在审计和跟踪库存上实现信息公开透明,确保医疗用品安全。 is based on the inexorable characteristics of the block chain, establishing a system of retroactive origin of medical supplies based on the block chain, and every time-marked transaction is automatically copied onto the block chain and cannot be modified. The non-defeating characteristics of the block chain ensure both the authenticity of data and the safety of data transmission, as well as the cost reduction effect. Using the characteristics of block chain distribution, medical supply manufacturers, wholesalers, terminal sales ensure the safety of medical supplies through transparency of information on the audit and tracking of stocks through the use of a system of traceability of medical supplies. 5.区块链+公共安全监测:控制疫情蔓延 5. 在疫情防控、疾病救治的过程中,涉及大量的独立机构,主要包括医院、政府各部门、疾控中心和相关公益组织等。利用区块链的分布式存储、不可篡改、加密性、可追溯性等特性,一是能够加快公共卫生系统在紧急情况下的响应速度,改进疫情监测预警网络和决策流程,防止相关信息造假,保持信息的透明性;二是能够保证不同机构在共享信息的同时,保护患者隐私;三是可以根据地理位置相关信息,可以快速定位感染者的活动位置,有助于加强疾病的防控效果。 involves a large number of independent institutions, including, inter alia, hospitals, government departments, CDCs and related public interest organizations, in the process of disease prevention and management. 6.区块链+分布式办公:实现多元化办公 6. 为了响应国家抗击疫情的号召,减少人群聚集,避免交叉感染,大多数公司鼓励员工在家办公,使用视频远程会议,在线上进行协作与上下班打卡等,这符合“区块链精神”的分布式特点,给分布式办公带来一次飞跃式发展的机会。正如有的专家对于区块链的未来预想一样:“区块链的存在会颠覆公司制,社区式办公或许会加速到来”。但是在办公效率和沟通方面,也存在一定的风险,既包括员工工作时间不可评估、团队协作沟通不畅等问题,也包括员工可能存在的道德风险。 , in response to the call of the State to combat the epidemic, to reduce crowds and avoid cross-infection, most companies encourage staff to work at home, use video teleconferences, online collaboration and off-duty cards, etc., which is consistent with the distributional nature of the “block chain spirit” and offers an opportunity for a leap forward in the development of distributed offices. As some experts have predicted for the future of the block chain: “The existence of block chains can destabilize corporate systems and community-based offices may accelerate.” But there are also risks in terms of office efficiency and communication, both in terms of non-evaluability of staff working hours, lack of teamwork in teams, and possible ethical risks for employees. 区块链具有去中心化、集体维护、公开透明、可追溯性等特征,在互联网群体协作中具有天然优势。一是基于区块链技术的信息透明化的特征,能够加强团队内部的信息共享效率;二是通过区块链独特的时间戳特征,能够形成一条具有时间顺序的链条,使链上的信息真实可靠并具有可溯性。公司领导也可以通过时间戳了解员工的工作进度,杜绝信息造假的可能,避免了信任问题和道德风险等问题。 7. 区块链+保险:让疫情之后更安心 在重大突发公共卫生事件中,必然要面临人员病重甚至丧失生命的情况,因而保险在其中的作用也愈加凸显。在此番防控新冠肺炎疫情的过程中,银保监会下属的多个部门也作出了适应疫情的业务和产品调整,主要体现在开通理赔绿色通道、丰富产品供给,以及扩展保险责任等。 In a major public health emergency, the role of insurance has become even more important in the face of severe human illness and even loss of life. In the course of controlling the new coronary pneumonia epidemic, various departments of the Silver Insurance Board have also adapted their operations and products to the epidemic, mainly through the opening of green corridors for compensation, the enrichment of products, and the extension of insurance responsibilities. 保险行业历来最受关注也最受诟病的几个点包括“核保难”,“理赔慢”、“中介多”,在此次疫情中可以看到,为了让核赔、理赔工作快速有效展开,多家保险平台开通快速理赔绿色通道。在核赔方面,由于人工服务在疫情中无法很好地配给,多项智能化技术被应用,区块链技术在保险中的应用也被重视。借助区块链技术,不仅可以解决上述的核保理赔难题,还可以解决传统保险行业存在的保险欺诈、对账难、中介收取高额费用等现象。 The insurance industry has traditionally been the most concerned and affected by nuclear insurance problems, the slow processing of claims, and the number of intermediaries. In this epidemic, it can be seen that, in order to allow quick and efficient processing of claims, multiple insurance platforms have opened green corridors for quick settlement. In the case of compensation, several smart technologies have been applied, as well as the use of block-chain technology in insurance. Through block-link technology, not only the above-mentioned problems of insurance claims, but also insurance fraud, reconciliation problems, high fees charged by intermediaries, etc. in the traditional insurance sector. 区块链防篡改的分布式存储技术,能确保链上用户信息的真实性,方便进行信息的交叉验证,从而有效防范保险欺诈,同时结合智能合约,可以实现保险核赔理赔流程自动化,减少线下人工成本,加快保险业务进程。通过区块链技术实现信息的实时全链条共享,可以让保险消费者与保险产品直接对接,消除以往因为信息不对称而存在的大量中间商加重了保险产品消费成本。 区块链技术基于其分布式存储、点对点传输、不可篡改等特点,在有效解决保险行业存在的“道德逆选择”、“信任机制建立成本高”等难题方面的作用日渐凸显。 近年来,监管也屡次发文鼓励区块链技术在保险行业的应用发展。如2019年7月16日,银保监会下发《中国银保监会办公厅关于推动供应链金融服务实体经济的指导意见》,其中提到,鼓励银行保险机构将物联网、区块链等新技术嵌入交易环节,提高智能风控水平。 In recent years, regulation has also encouraged the development of block-chain technologies in the insurance sector. For example, on 16 July 2019, the Silver Insurance Supervisory Board issued guidance for the Office of the Superintendent of China's Financial Services on the promotion of the real economy of supply chain financial services, in which it mentioned that bank insurance institutions are encouraged to embed new technologies, such as networking of goods, block chains, etc., into the trading chain and to raise the level of smart wind control. 国内外已有多家保险企业将区块链技术应用到保险业务中。公开资料显示,早在2015年,众安保险旗下众安科技组建了区块链团队,探索区块链技术与保险产业的融合;阳光保险早在2016年就推出涉及区块链技术概念的积分体系“阳光贝”;2017年,上海保交所推出区块链保险业务平台“保交链”,在交易、结算反欺诈等方面进行应用,近期也在地震保险领域进行“共保体+区块链”的尝试;中国人保已经开展保险营销和养殖保险等领域的区块链技术应用;中再集团联合众安科技等企业推出国内首个区块链再保险实验平台,而平安集团等险企有而早已将区块链技术应用到到各个业务流程。 has been used by a number of insurance firms both inside and outside the country to apply block-chain technology to insurance operations. According to public information, as early as 2015, crowd-based block-chain teams were formed under the popular umbrella to explore the integration of block-chain technology with the insurance industry; Sunshine Insurance launched a system of building blocks related to the concept of block-chain technology as early as 2016, Sunbell; in 2017, the Shanghai Insurance Agency's sector-chain insurance operational platform, “Scope chain”, applied in the areas of trade, settlement of anti-fraud, and more recently in the area of seismic insurance. 不久前,在中国信息通信研究院和上海保交所牵头、10家业内外机构共同编写的《区块链保险应用白皮书》中提到,区块链目前在保险业的主要运用范围涵盖再保险、年金管理、健康医疗等11个应用场景。[3] The White Paper on the Application of Block Chain Insurance, co-sponsored by the China Institute of Information and Communications and the Shanghai Conservancy and co-authored by 10 industry and external agencies, recently mentioned that the main areas of use of block chains in the insurance industry now cover 11 applications such as reinsurance, annuity management and health care. href="https://member.bilibili.com/artique-text/home? 3、区块链在疫情防控中引发的思考 3 > > > >. 区块链应用尚处于发展早期:在疫情防控中,区块链尚未能发挥最强优势,区块链仍处在发展早期,业务场景探索不够深入、各大规模应用场景也还未落地,尚未形成生态化布局。在这场抗击疫情行动,相比大数据和人工智能,区块链迟到了。 区块链技术还未形成公信力:区块链是比较新兴的技术,在全社会还没有形成通用或者基础的应用。面对疫情中各项需求突然涌现,在短时间应用还存在很大难度。公众对区块链技术的认知和信任问题也还没有普及。 由此可以看出,对于区块链落地在实体产业的落地还需要加大力度。另外,区块链技术的普及也任重道远。[4]
区块链技术可以有着丰富的应用场景,不同应用场景的应用方式和具体架构都不尽相同。区块链技术在公共管理领域的应用比较晚近,应用领域不断拓展。比如,区块链技术用于医保领域用于提高医疗数据存储的安全性;用于提高政府内部管理系统的效率;用于政务服务领域,实现快速审批、智慧政务等。这些应用都看中了区块链所具有的共享、透明、可追溯、防篡改、分布式的技术优势。
当前区块链也在积极推进,围绕前面的具体应用场景,快速开展区块链服务,助力疫情信息透明化、病人信息的共享化等。我们相信,区块链有望补足在疫情时期暴露的社会运作短板,从疫情等突发事件中汲取宝贵经验,以一种新的姿态迎接行业未来。
The current block chain is also actively moving forward, with block-chain services fast-tracked around the specific applications ahead, transparency of information about the epidemic, sharing of patient information, etc. We believe that block-chains are expected to complement the short workings of societies exposed during the epidemic, drawing valuable lessons from emergencies, such as the epidemic, in order to take a new stance towards the future of the industry.
[1] [1]段夕华.区块链的原理与机制[J].团结,2019(04):18-21.
[1] The rationale and mechanisms of the block chain [J]. Unity, 2019(04): 18-21.
[2] [2]曾诗钦,霍如,黄韬,刘江,汪硕,冯伟.区块链技术研究综述:原理、进展与应用[J].通信学报,2020,41(01):134-151.
[3] [3]王旭.基于区块链的医疗数据共享隐私保护问题的研究与实现[D].西安电子科技大学,2019.
[4] [4]张楠,迪扬.区块链技术在疫情防控中的应用场景介绍[J/OL],2020-02-08
注册有任何问题请添加 微信:MVIP619 拉你进入群
打开微信扫一扫
添加客服
进入交流群
发表评论